Kubeadm 是一个提供了 `kubeadm init` 和 `kubeadm join` 的工具,作为创建 Kubernetes 集群的 “快捷途径” 的最佳实践。
kubeadm 通过执行必要的操作来启动和运行最小可用集群。按照设计,它只关注启动引导,而非配置机器。同样的,安装各种 “锦上添花” 的扩展,例如 Kubernetes Dashboard, 监控方案,以及特定云平台的扩展等。
Kubeadm 是一个提供了 `kubeadm init` 和 `kubeadm join` 的工具,作为创建 Kubernetes 集群的 “快捷途径” 的最佳实践。
kubeadm 通过执行必要的操作来启动和运行最小可用集群。按照设计,它只关注启动引导,而非配置机器。同样的,安装各种 “锦上添花” 的扩展,例如 Kubernetes Dashboard, 监控方案,以及特定云平台的扩展等。
前言
昨天有一位搞 DBA 同学问我会不会用 Docker。Ta 想要在上面跑一个 Oracle 实例。整个过程非常流畅,写篇文章备用。 :)
本文的主要目的是将 Apache 的访问日志转换成 JSON 格式,然后存储到 ES, 供 ELK Stack Platform 进行数据分析与统计。 尽管现在许多发行版本都已经默认安装上了 rsyslog, 但是还是推荐从 rsyslog repositories 获取最新的稳定版本。这样你将从中获益。你将需要下面的软件包:
让我现在就开始配置吧。需要执行以下操作:
前言 我想使用 RHEL/CentOS 系统自带的日志工具Rsyslog, 根据程序日志类别动态存储到一个以程序名命名的文件。
日志中心化给我们带来了好多优势, 那么我们如何收集 Nginx 日志到日志服务器呢? Nginx 自 1.7.1 版本之后开始支持 syslog.
Originally posted on Centralized logging for fun and profit
Setting up a centralized log server using syslog isn't as hard as many may believe. Whether it's logs from Apache, nginx, email services, or even from your own Python applications having a central log server gives you many benefits:
前言 本文主要简述的如何使用 Rsyslog 实现日志的中心化,并利用 ELK Stack 实现图形搜索与数据统计。
Originally posted on the server as code: Rsyslog to Elasticsearch
长时间以来,系统管理部门已经知道,集中日志很重要,无论是故障排除还是出于安全考虑。 在我看来,我不仅要集中日志,还要让它们可以搜索。 (在集中式日志文件上的 grep 不是很强大,但这不是我正在寻找的解决方案。)
... is a distributed, RESTful search and analytics engine capable of solving a growing number of use cases. As the heart of the Elastic Stack, it centrally stores your data so you can discover the expected and uncover the unexpected.
它提供的几个基础的功能有:存储/索引/搜索 数据。它是典型 ELK Stack(Elasticsearch, Logstash, and Kibana )的一部分。 作为系统管理员,我认为还需要注意的是,当用作集群时,Elasticsearch是分布式系统。 不应该轻率地添加另一个分布式系统。 作为一个例子,我现在有了生产分布式系统的MySQL Galera,RabbitMQ,Nomad和Elasticsearch。
Article: Structured Logging with Rsyslog and Elasticsearch Author: Radu Gheorghe
As more and more organizations are starting to use our Performance Monitoring and Search Analytics services, we have more and more logs from various components that make up these applications. So what do we do? Do we just keep logging everything to files, rotating them, and grepping them when we need to troubleshoot something? There must be something better we can do! And indeed, there is – so much so, that we’ll soon be launching Logsene – a Log Analytics service to complement SPM. When your applications generate a lot of logs, you’d probably want to make some sense of them by searching and/or statistics. Here’s when structured logging comes in handy, and I would like to share some thoughts and configuration examples of how you could use a popular syslog daemon like rsyslog to handle both structured and unstructured logs. Then I’m going to look at how you can take those logs, format them in JSON, and index them with Elasticsearch – for some fast and easy searching and statistics. If you are going to Berlin Buzzwords this year and you are into logging, Logstash, ElasticSearch, or Kibana, I’ll be talking about them in my JSON logging with ElasticSearch presentation.